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ABSTRACT 

Fine particulate matter (PM2.5) is the most important environmental risk factor, requiring routine monitoring and analysis 

for effective management of air quality. Exposure to high levels of PM2.5 can have significant impacts on human health, 

such as aggravating asthma, causing respiratory problems, and increasing the risk of lung cancer. High levels of PM2.5 

can affect visibility and reduce air quality, which can in turn impact weather conditions. For example, during periods of 

high PM2.5 concentrations, there may be increased haze and smog in the air, which can reduce visibility and make it 

difficult to see objects at a distance. In some cases, this can also result in lower solar radiation and, as a result, cooler 

temperatures. This work used a machine-learning approach to predict PM2.5 and examine the association between PM2.5, 

a variety of contributing factors, trend analysis, and their temporal variations based on air quality data and meteorological 

data for the metropolitan city of Patna for the period 2016 to 2023. The results show that PM2.5 concentration predictions 

can be made using the random forest model. In this model, the PM2.5 concentration is significantly affected by the 

visibility, mean sea level pressure, CO, O3, relative humidity, wind speed, dew point temperature, etc., but there is only a 

weak link between these parameters. From 2016 to 2023, the data showed a persistence in PM2.5 pollution levels, and the 

data also revealed substantial variations in PM2.5 concentration and its fluctuations over the different months. The 

objective of the analysis is to take a close look at the impacts of weather on air pollution in the capital city of Bihar. This 

type of analysis may be carried out in other cities as well. This research could help air pollution management programmers 

in Patna, the state capital, as well as all cities lying in the pollution-prone Indo-Gangetic Plains regions. 
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1. Introduction  
 

Air pollution has become a worldwide problem that 

hurts the environment and makes people sick all 

over the world. In recent years, as industrialization 

and urbanization have rapidly progressed, polluting 

gases from fuel combustion and fugitive dust 

(Gupta et al. 2022) from traffic and construction 

have caused frequent occurrences of haze or smog 

globally under unfavorable climatic circumstances 

of diffusion. People consider air pollution to be one 

of the great killers of our time because it is 

hazardous to their health (Z. Sun and Zhu 2019). 

Most developing countries, like India, have 

worsening air quality every year (Swarna Priya and 

Sathya 2019). Nearly 1,800 people die every day in 

developing cities because of the dirty air (Autrup 

2010; Remoundou and Koundouri 2009). About 

90% of deaths from air pollution happen in 

countries with low or middle incomes. PM2.5 is 

one of the most significant pollutants in haze-

polluted areas (Westervelt et al. 2016). The death 

rate from air pollution shows that life expectancy 

drops by nearly three years on average (Taneja et 

al. 2017). It hinders not only economic growth and 

has negative effects on people's health (Sharma, 
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Chandra, and Kota 2020), as well as making it more 

difficult for people to go around. Efforts are 

currently being made all around the world to better 

control PM2.5. An additional crucial aim is the 

efficient control of PM2.5. Analyzing air pollutants 

and meteorological parameters closely connected 

with PM2.5 is vital for successful control of the 

pollutant. 
 

There have been a lot of studies done to try to 

figure out how to stop and regulate air pollution. 

Socioeconomic and climatic variables, as well as 

the presence and quantity of other pollutants, all 

play a role in determining PM2.5 concentrations. 

Because to its atmospheric origin, PM2.5 is 

sensitive to variations in temperature, humidity, and 

wind speed. PM2.5 is impacted by the same 

external variables as other anthropogenic pollutants. 

Because of this, academics have investigated the 

weather and pollution relationship. (Cifuentes et al. 

2021) used statistical models and showed that sun 

radiation and temperature were the most important 

factors. Wind and surface turbulence were shown to 

be particularly sensitive to PM2.5 levels, as 

discovered by (Park et al. 2021). The dramatic drop 

in PM2.5 values was driven more by synoptic than 

local factors, (X. Li et al. 2021) discovered that 

weather conditions are associated with daily 

variations in PM2.5 concentration. Seasonal and 

regional variations in the impact of weather on 

PM2.5 concentration were observed by (Chen et al. 

2018). When compared to other climatic 

parameters, temperature, humidity, and wind speed 

had the greatest impact on PM2.5 concentrations. 

The effects of weather and human activity 

antecedents on PM2.5 were shown to vary 

significantly throughout time and space, as 

discovered by (Jing et al. 2020). According to the 

work of (Zheng et al. 2019), PM10, SO2, NO2, and 

CO are the primary factors impacting the 

concentration of PM2.5, whereas meteorological 

conditions and O3 are secondary contributors. 

Using long-term air quality data, (Mingzhi 2017) 

identified climate, NO2, and O3 as greater causes 

of PM2.5, while (Licheng Zhang et al. 2020) used a 

variety of statistical techniques to assess regional 

and seasonal changes in PM2.5 concentrations. 

Based on their analysis of the effects of typical 

severe weather conditions on PM2.5 in Tianjin, 

(Shao et al. 2021) found that increases in wind 

speed and decrease in planetary boundary height 

increases the PM2.5 concentration, with inversion 

having the greatest impact. Research must therefore 

incorporate other air pollutants, such as SO2, CO, 

O3, NO2, and PM10, as well as climatic variables 

like temperature, wind direction and speed, rainfall, 

and humidity, in order to provide more precise 

predictions of PM2.5 concentrations. It is of major 

scientific importance to investigate an accurate 

PM2.5 concentration prediction model due to the 

inherent difficulty in doing so due to the wide 

variety of factors that might affect PM2.5 

concentration. Inaccurate lower boundary 

conditions, approximation of physical parameters, 

and a lack of a perfect initial state are just a few of 

the problems with a PM2.5 concentration forward 

prediction model based on physical principles, 

beginning with meteorological elements and 

pollution circumstances (Cheng et al. 2021). At the 

same time, as computing power has increased, 

interest in data-driven statistical approaches has 

grown. There is a lot of interest in machine learning 

because of the benefits it offers in automatically 

refining algorithms via experience (Lei Zhang et al. 

2021). Random forests and neural networks, two 

examples of the more common types of nonlinear 

machine learning models, have shown promising 

predictive performance (Delavar et al. 2019). One 

cannot just apply the integration algorithm as a 

machine learning algorithm. To accomplish a goal, 

it constructs and integrates many machine learners. 

The decision trees in a random forest are all 

independent yet work together as an ensemble to 

make predictions (Sadorsky 2021). The neural 

network approach differs from the standard 

parametric model approach in that it is a data-

driven adaptive strategy that makes no assumptions 

about the underlying problem model. Neurons can 

acquire the latent functional correlations between 

the inputs through training and learning (Lee 2020), 

even when the underlying rules for issue resolution 

are unclear. It works well with issues that have 

sufficient data and observed variables but are 

difficult to explain using hypotheses and 

established theories. Machine learning's exceptional 

learning capabilities has made it increasingly 

popular for PM2.5 forecasting. Using a deep neural 
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network model, (Wang and Sun 2019) reduced the 

estimation bias caused by insufficient AOD 

(aerosol optical depth) by predicting the PM2.5 

concentration in the missing AOD (aerosol optical 

depth) area using data on gaseous pollutants (NO2, 

SO2, CO, and O3). An effective random forest 

model for assessing ground PM2.5 was created by 

(Yang, Xu, and Yu 2020), which took into account 

reflectance, meteorological field, and land use 

variables. When discussing PM2.5, certain weather 

conditions, and land use variables, and also 

underlined the importance of ground-level issues. 

(Haiming and Xiaoxiao 2013) chose PM10, sulphur 

dioxide, nitrogen dioxide, temperature, pressure, 

humidity, wind direction, and wind speed as poten-

tial influencer. Radial basis function (RBF) neural 

network based models were utilized to make PM2.5 

forecasts. The findings demonstrated the model's 

usefulness. (Zheng et al. 2019) combined gaseous 

pollution and meteorological parameters for a more 

all-encompassing forecasting system. To forecast 

the 24-hour PM2.5 concentration, (Shi, Fang, and 

Ni 2021) suggested a neural network technique 

based on the attention mechanism. Based on 

measures of root-mean-square error (RMSE) and 

mean absolute error (MAE), he concluded that the 

model was more accurate in its predictions. In a 

recent study (Lu et al. 2021) suggests, PM2.5 

concentrations are affected by a wide variety of 

social, economic, meteorological and the interaction 

between pollutants factors. 

To deal with PM2.5 air pollution forecasts with 

sufficient accuracy, (Du et al. 2021) created a 

hybrid deep learning architecture combining one-

dimensional convolutional neural networks and 

bidirectional long short-term memory networks. By 

putting four machine learning models through their 

paces using standard of analysis and cross-

validation, (Czernecki, Marosz, and Jędruszkiewicz 

2021) proved the high applicability of machine 

learning to short-term air quality prediction. The 

aforementioned research concentrated on improving 

the current model to improve prediction accuracy 

and performance without considering the model's 

interpretability or the many components that 

contribute to PM2.5. 
 

Only a small number of PM2.5 studies (Kumar et 

al. 2020) have been conducted in the state of Bihar, 

India. The state of Bihar, India, experiences the 

subtropical monsoon, a mild and dry winter, and a 

hot summer, with annual temperature ranges of 1°C 

to 49.5°. Intensive agriculture has been the primary 

focus of development. Winter haze is com-mon due 

to the geographical location and the widespread 

practice of burning straw outdoors in the region's 

rural communities. When it comes to air pollution, 

the capital city of Patna is indicative of other major 

cities in this region. The public may quickly and 

easily assess the present state of PM2.5 pollution in 

Patna and gain a deeper and more intuitive grasp of 

the state of the city's air quality. Bihar State 

Pollution Control Board (BSPCB) decision-making 

bodies can use this information as a foundation for 

more precise air pollution control efforts. The 

formulation of urban development plans and the 

maintenance of sustainable economic development 

are of the utmost importance. The PM2.5 trend was 

also addressed in this research, along with 

variations of PM2.5 (diurnal, monthly, etc.). India 

has established a number of public awareness 

programs and policies to reduce pollution 

(MoEFCC 2019). The impact of air quality data and 

meteorological data on PM2.5 concentration 

changes was investigated, and their respective 

contributions to these changes were quantified 

using the random forest model. Using the capital 

city's air quality and meteorological data from 

2016–2023 as predictors and PM2.5 concentration 

as the outcome, a prediction model was developed. 

Using the SHAP technique, this model identified 

the most important elements in determining PM2.5 

concentrations and assessed the impact of each 

factor. Each factor's relationship to PM2.5 was 

calculated using the Pearson technique. Variations 

and trends in PM2.5 concentration between and 

within years were evaluated, and several potential 

causes of such variation in the capital city of Patna 

were looked into. This can help with the state’s air 

pollution control and air quality management by 

providing both theoretical and data support. 
 

The remainder of this paper is organized as follows: 

In Section 2, the study areas, the observed dataset, 

and the proposed methodology are presented. The 

extensive assessment and the discussion of the 

results are provided in Section 3. Finally, we
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Figure 1: The geographical location of the Capital City of Patna (a) India (b) State of Bihar, India (c) 

Capital Cities of Patna. 

 

Table 1. The presentation of the data used in the analysis and the prediction of PM 2.5. 

Type Name Unit Value Range Source 

Air Quality 

Data 

PM2.5 µg/m
3 

3.1-1049 Bihar State Pollution Contro 

Board,Govt. of Bihar NO2 µg/m
3
 1-328.2 

CO mg/m
3
 0-26.8 

SO2 µg/m
3
 1-1568 

O3 µg/m
3
 1-778.3 

Meteorological 

Data 

Dry Bulb Temperature °C 4.6- 44.4 India Meteorlogical 

Department Dew Point Temperature °C 0.1- 39.4 

Relative Humidity % 7.7-100 

Wind Speed knots 0-30 

Present Weather coded 0-99 

Past Weather coded -- 

Station Level Pressure hPa -- 

 

 

 
Figure 2: Schematic diagram of the random forest principle. 
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provide conclusions in Section 4. At the end, a list 

of acronyms is provided in Table A1 to make it 

easier to read articles. 
 

2. Materials and Methods 
 

2.1 Data 
 

Air quality and meteorological data were analyzed 

for this investigation. The hourly air quality data 

shared by the Bihar State Pollution Control Board 

and corresponding weather data collected from the 

state’s India Meteorological Department were used 

for the analysis and prediction of PM 2.5. Air 

quality and corresponding meteorological data were 

measured for the period 2016–2023 (CO, mg/m3; 

other pollutants, PM2.5, PM10, NO2, CO, SO2, 

and O3 µg/m3) and corresponding hourly 

meteorological parameters from Patna Airport (Dry 

Bulb Temperatures (°C), Dew Point Temperature 

(°C), Past and Present Weather(Code), Relative 

Humidity (RH%), Pressure (hPa), Average Wind 

Speed (Knots) etc.) were collected for the studied 

area presented in Fig. 1. Table 1 displays the details 

of the data information that was used in this 

analysis. 
 

2.2 Random Forest Prediction Model 
 

Bagging and RF (Breiman 2001) are two 

representative parallelization approaches among 

ensemble-learning algorithms in which individual 

learners do not have a substantial dependence on 

each other, they can be made at the same time. 

Bagging works by first employing the bootstrap 

approach to select a subset of training samples from 

a larger dataset, then using those examples to train a 

relatively inexperienced learner, before finally 

combining the trained learners into a single one. 

Both the classification and regression tasks 

contribute to the final result by voting on the output 

of the prediction. RF is a more extensive form of 

bagging. The basic algorithmic concept is depicted 

in Fig.2.  
 

RF employs a decision tree trained with the 

classification and regression tree (CART) algorithm 

as a weak learner and includes a random selection 

of characteristics in the training process. The 

typical decision tree uses a node's best feature (out 

of N possible characteristics) to split the tree into 

left and right branches. However, RF picks a 

feature to divide the decision tree's left and right 

branches at random from among Nsub (Nsub < N) 

sample features on the node. The model's 

applicability is thus expanded even further. In each 

iteration of bagging's random sampling process, 

about 36.8% of the training data is left out of the 

kth tree's creation. We refer to these as kth tree out-

of-bag samples. These additional data are not part 

of the modelling process but can be used to check 

the accuracy of the model. 
 

In conclusion, RF constructs a single regression 

decision subtree via the bootstrap method and a 

random selection of F-characteristics for node 

splitting. The aforementioned steps are repeated 

numerous times to build T regression decision 

subtrees, and then each tree in the resulting random 

forest is allowed to develop naturally without being 

trimmed. The final forecast is the average of all the 

sample-training decision trees. Fig.3 is a flowchart 

depicting the algorithm for the random forest. Due 

to its ability to handle high-dimensional data and 

immunity to over fitting, the random forest 

technique has become increasingly popular. And it 

gets good results for default value problems while 

still providing an objective estimate of the 

significance of each attribute. Training with this 

method can be performed in a very parallel fashion. 

It's fast for training huge samples, quite flexible 

across datasets, and accurate in its predictions. 
 

In our research, we performed a grid search to 

identify the best model parameters for achieving the 

best prediction. In order to find the optimal 

combination of settings for a given problem, the 

grid search approach iteratively cycles through all 

of the available parameters. Table 2 shows the 

explanations and settings of several of the most 

important random forest parameters utilized in this 

investigation; the remaining parameters were left at 

their default levels. 
 

2.3 Data Analysis Method 
 

The degree to which people are able to comprehend 

the rationale behind their choices is referred to as 

explain ability. The foundation of machine learning 

is an algorithm that, given data, seeks out potential 

patterns and relationships, and ultimately, creates
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Figure 3: Flowchart of the proposed random forest regression models 

 

 
Table 2. Best parameters achieved during the grid search of random forest regression models 

 

Name Meaning Values 

N_estimators Number of tress in the forest 200 

max_features Number of features to consider when looking for the best split sqrt 

Max_depth Maximum depth of the tree 10 

bootstrap Bootstrap samples are used when building trees. True 

criterion Measure the quality of a split mse 

Oob_score Whether or not the generalisation score should be estimated using out-

of-bag samples. 

True 

Random_state Adjusts how many replicates are used for bootstrapping the samples 

used to construct trees and how many features are considered when 

determining the optimal split at each node. 

20 

 

judgments or predictions based on those findings. 

People will have an easier time comprehending the 

reasoning behind particular choices or forecasts to 

the extent that the phenomenon in question is 

explicable. Not only are people pleased with the 

results of the model, but they are also thinking more 

about the factors that contribute to those results. 

This kind of thinking assists in the optimization of 
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the model and its characteristics, and it also has the 

potential to assist in better comprehending the 

model itself and improving the model's overall 

quality. 
 

The Shapley value (Lundberg and Lee 2017) served 

as inspiration for the additive explanation model 

known as SHAP. The purpose of this approach is to 

compute the contribution of each feature to the 

prediction of an instance X in order to explain the 

prediction of that instance. SHAP assigns the output 

values to the Shapely values that are associated 

with each feature, and the feature values of a data 

instance serve as "contributors" in this context. 

Measures of the contributions that each feature 

makes to a machine-learning model are referred to 

as shapely values. The following is how the 

Shapley value for feature Xj in the model should be 

interpreted (Ziqi Li 2022): 
 

   (1) 
 

where p is the number of features, N\{j} is the set 

of all possible combinations of the features except 

Xj, S is the set of features in N\{j},f(S) is the model 

prediction using features from S, and f (S⋃{j}) is 

the model prediction using features from S and Xj. 

Shapley value of a feature is its marginal 

contribution to the model prediction averaged over 

all possible models with different permutations of 

features, as indicated by the interpretation of 

Equation (1). (Lundberg and Lee 2017) developed 

SHAP because they recognised that the complexity 

of computing Shapley values was a major barrier to 

their widespread use. To quantify the impact of 

features on the final output value, it computes the 

Shapley value of each feature value and provides 

the following justification: 
 

+                                     (2)                                                                               

 

where g is the explanatory model, M is the number 

of input features  is the typical mean of the target 

variable across all samples s the 

simplified features and indicates whether the 

corresponding feature exists (1 or 0), R is the 

feature attribution for feature j, the Shapely values, 

and Φ0 is the feature attribution for feature j. For 

example, with the X we're discussing, every single 

feature value is "present" (1 for each of the 

simplified features). The preceding formula can 

now be written more simply as: 
 

+                                   (3) 

 

That which shifts the expected result from the mean 

to the predicted result, namely g(z’), can be thought 

of as the contribution of the total of the Shapley 

values of each feature. The benefit of SHAP is that 

it makes it evident if a given attribute aids or 

hinders the prediction. The SHAP package in 

Python was used for the study presented in this 

paper. The current analysis's random forest 

prediction model is explained by using this library. 
 

3. Results and Discussion 
 

The investigation results of PM2.5 over the capital 

cities of Patna and the results of predicted models 

are presented in this section. 
 

3.1 Time Series Analysis of PM2.5 
 

Here, we detail the results of our study into the 

dynamics between meteorological and pollution 

variables and PM2.5 concentration across time. 

Diurnal, monthly, and annual variations are used to 

describe them. The variation in the PM2.5 levels for 

a location is a complex interplay of emissions, 

environmental factors, such as geography and 

meteorological factors (Alimissis et al. 2018; 

Ganguly et al. 2019; Nair et al. 2007). 
 

3.1.1. Diurnal Variation of PM2.5 
 

Fig. 4 displays the PM2.5 monthly diurnal variation 

in  the capital cities of Patna averaged over the 

more than seven years (2016 to march 2023),the 

figure displays the diurnal mean PM2.5 readings 

.The primary peak of PM2.5 concentrations is 

observed around 0230 hours in the night, and a 

secondary peak is observed at 1200 hours in the 

afternoon. Season and location can cause a change 

of up to two hours in the morning peak hours. Late 

winter sunrises and the start of human activity push 

cities' winter peaks later in the day than their 

summer counterparts. Unlike in developed 

countries, the diurnal variation in PM2.5
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Figure 4: Diurnal variation of PM2.5. 

 

concentrations in our region is not solely driven by 

transportation or industrial activities; instead, it is 

the atmospheric conditions, particularly the PBL 

layer and low-level wind that determine the 

concentration of particulate matter. The same 

diurnal pattern is observed in all four months, i.e., 

November, December, January, and February, 

suggesting that the same mechanism governs the 

concentration, transportation, and dispersal of 

PM2.5 during these months. In the absence of 

strong convective heating during the winter months, 

PBL height starts falling early in the afternoon, and 

the lowest level is attained sometime in mid-night 

around 0230 hrs. This results in the confinement of 

available particulate matter to a smaller area, thus 

increasing its concentration. In terms of intra-

seasonal variation, the PBL height can come down 

to less than 500 meters during peak winter, 

compared to 3–4 kilometers during peak summer 

afternoon; thus, even when the absolute amount of 

PM2.5 remains the same, there will be a very large 

variation in concentration value between summer 

and winter months. 
 

3.1.2. Monthly Variation of PM2.5 
 

PM2.5 follows the same general pattern as other 

polluting emissions like NO2, CO, and O3. Since 

baseline PM2.5 values remain high during the 

winter due to persistent atmospheric conditions  

(Sreekanth, Niranjan, and Madhavan 2007; Tiwari 

et al. 2013; Tyagi et al. 2017) and increased 

emissions (Guo et al. 2017, 2019; Schnell et al. 

2018), the maximum values are reached during this 

time of year. It is usually very high during the 

November to February. But the corresponding 

rainfall had a significant impact on the monthly 

concentration of PM2.5 (Shown in Fig.5). It is 

usually very high during the post-monsoon and 

winter seasons, which last from November to 

February. But the correlated rainfall had a 

significant impact on the monthly concentration of 

PM2.5. As of the post-monsoon season (October to 

December) and winter season (January to 

February), both have low rainfall. So, the highest 

concentration of PM2.5 was reported in these 

months. Due to wet scavenging and washout by rain 

during the South-West monsoon, PM2.5 levels are 

lowest during the monsoon months (JJAS) (Singh, 

Singh, and Biswal 2021). During later parts of the 

monsoon season, if rainfall diminishes, PM2.5 

greatly increases, as in September 2021 and 2020. 

Straw burning during the harvesting season of 

Kharif and winter cooling may be to blame for this 

increase in PM2.5. In addition, the low wind speed,
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Figure 5: Plots of Monthly Variation of PM2.5 and Corresponding Rainfall. 

 

 

Figure 6: Distribution of PM2.5 across the years. 
 

low temperature, short length of sunshine, high 

pressure, and high relative humidity that prevailed 

at the time all contributed to the buildup of PM2.5. 

Starting in March, PM2.5 levels hovered at about 

100 µg/m3, where they stayed until the month's 

end. During this time, temperatures rose 

dramatically, and urban heating and pre-monsoon 

showers diminished PM2.5. 
 

3.1.3 Inter-Annual variation of PM2.5 
 

In this analysis, we looked at how PM2.5 levels in 

the capital city of Patna have changed over time 

(presented in Fig. 6). It shows that 2017 and 2020 

were the years with the highest median pollution 

concentration. But the highest upper margin values 

for PM2.5 were in 2016, even though the average 

indicative of the worst pollution dropped. The 

number of extreme readings went up in 2019 in 

spite of a low median for pollution. In 2022, the 

violin plot broadened around the median, 

suggesting that this year the number of days with 

low PM2.5 concentration are more than usual. But 

from 2020 on, there will be a minor decline in 

extreme PM2.5 and outlier concentrations. But the
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Figure 7: Yearly average concentration of PM2.5 and associated number of days exceeding the standard 

level of PM2.5. 

 

 
Figure 8: Prediction Outcome of PM2.5 through Random Forest Regression Models. 

 

frequency of low pollution concentrations increases 

over time. The capital city of Patna's reduction in 

air pollution may have contributed to this positive 

outcome. 
 

The annual average concentration limit for PM2.5 

is set at 40 μg/m3 and the 24-hour average 

concentration limit is set at 60μg/m3 by the 

Ambient Air Quality Standard in India. Fig.7 shows 

that between 2016 to 2022, both the number of days 

in which PM2.5 concentrations were over the 

threshold and the annual average concentration of 

PM2.5. 
 

3.2 Model Evaluation and Prediction 
 

Hourly Atmospheric pollutants (NO2, CO, SO2, 

and O3), meteorological conditions (Wind 

Direction, Wind Speed, Air Temperature, Dew 

Point Temperature, Relative Humidity, Cloud 

Amount, Present Weather, Past Weather ,Visibility 

,MSLP,SLP) were incorporated into a random 

forest prediction model for Patna from 2016 to 

2023. Eighty percent of the dataset were used for 

training and the remaining were used for testing. 

The model's result was the hourly concentration of 

PM2.5. Fig.8 displays the results of fitting the test 

samples. The density scatter plot clearly 

demonstrates the model's high predictive quality. 

The sample points cluster together and are roughly 

dispersed on either side of the straight line. The 

prediction model's estimates of PM2.5 

concentrations were remarkably close to the 

measured values. Equation: Y = 0.66X + 39.42 was
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Figure 9: Contribution of features to predicted values (a) Ranking of feature contributions (b) Variation 

of True and Predicted PM2.5. 
 

found to be the best fit. The results were 

satisfactory, with an R2 as high as 0.74 and RMSE 

and MAE values of 52.97 and 28.51 μg/m3, 

respectively. The aforementioned findings show 

that PM2.5 concentrations might be predicted with 

the chosen method. In a similar vein, a random 

forest model was employed to forecast PM2.5 (X. 

Gao et al. 2022; Zhiyuan Li et al. 2021). This 

allows for dissection of the impact of a variety of 

variables. 

3.3 Predictive Factors' Impact on PM2.5 Levels 
 

Our model results and the roles of the influencing 

elements were explained using the SHAP 

technique, presented in Fig. 9. As can be seen in 

Fig. 9, visibility has the highest impact on the 

concentration of PM2.5 with a shap value greater 

than 40. Hence, we can determine that PM2.5 is a 

major contributor to the low visibility. The 

influencing factors of PM2.5 are in the order of
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Figure 10: Heat-map of the correlation between PM2.5 and its predictors. 
 

visibility > MSLP>CO>O3>Relative 

Humidity>SLP>NO2>Cloud Amount>Air 

Temperature>Wind Speed with a shap value greater 

than 2.5. The greatest PM2.5 concentrations were 

found to occur between 45 and 70% relative 

humidity (RH) (Lou et al. 2017). Also, the plots of 

predicted and actual PM 2.5 are presented in Fig. 

9(b), which clearly signifies that both have similar 

values. Hence, the prediction is precise and 

accurate. 
 

3.4 Correlation between PM2.5 and Predictors 
 

The relationship between PM2.5 and the 

investigated factors was determined using the 

Pearson correlation technique. The outcome is 

presented in Fig. 10. Among the major atmospheric 

pollutants, CO was highly correlated (0.48) with 

PM2.5, and O3 concentration was negatively but 

weakly correlated (-0.073) with PM2.5. The main 

reason is that an increase in the PM2.5 

concentration can increase the scattering of solar 

radiation in the visible and near-infrared bands, thus 

reducing the photochemical rate and, finally, 

leading to a decrease in the O3 concentration. 

Significant positive correlations were observed 

between NO2 and PM2.5, with coefficients of 0.19. 

Thus the order of correlation with the pollution 

parameters is CO > NO2 > O3 > SO2. In fact, CO
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Figure 11: STL decomposition and GLS regression of daily mean PM2.5 for the capital cities of Patna 

over a period of seven years (2016–2023) Trends presented in (a), seasonal components presented in (b), 

and residuals shown in (c) The red line predicted the trend lines. 
 

and NO2 concentrations were positively correlated, 

indicating that the emission sources of these two 

pollutants were similar; for example, they may have 

been the burning of straw and coal (M. Li et al. 

2017). In addition, the photochemical reactions of 

NO2, CO, and SO2 can generate nitrate and 

carbonate, which can lead to an increase in 

PM2.5(S. Zhang et al. 2021). 
 

In terms of the meteorological parameters, a 

positive correlation was found between PM2.5 and 

station level pressure and relative humidity, which 

were adversely linked with air temperature, dew 

point temperature, wind direction, and wind speed. 

This is due to the fact that seasonal pollution is 

more severe. High pressure and low wind speed 

support a stable state for the near-surface 

atmosphere during cold periods, such as winter, 

which strengthens the thermal inversion layer and 

reduces the diffusion of pollutants (Ma et al. 2021). 

There is less PM2.5 since the wind is blowing faster 

and diluting the particles. More precipitation means 

more moisture is removed, which is a key factor in 

the decrease in PM2.5 concentration (B. Gao et al. 

2019; Y. Sun et al. 2019). The RH correlation 

coefficients with PM2.5 concentrations were less 

than 0.1, making them statistically insignificant. A 

recent study found that PM2.5 concentrations 

increased with increasing relative humidity (RH = 

45–70%) (Lou et al. 2017). Low correlation may 

explain why the RH was constantly different from 

45% to 60% and the PM2.5 levels were usually 

high. 
 

3.5 Trends Analysis of PM2.5 

 

In order to determine the slope of the trend 

component, GLS was used to decompose the daily 

mean PM2.5 time series for the capital cities of 

Patna into trend, seasonal, and residual components. 

Fig. 11 displays the STL decomposition of the daily 

mean PM2.5 and the GLS-fitted models. The 
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corresponding equation, which displays the GLS 

linear regression slope with a 95% confidence 

interval, reveals no trends of PM2.5 across Patna's 

capital cities. 
 

Thus, this research confirms that there is an urgent 

need to mitigate PM2.5. The PM2.5 levels in Patna 

may have been lowered by the combination of 

public awareness programmes (MoEFCC 2019) and 

pollution mitigation projects. 
 

4. Conclusion 
 

Using the hourly air quality and associated 

meteorological datasets from 2016 to 2023 of the 

capital cities of Patna, India, this study built a 

random forest model to estimate PM2.5 

concentrations in the coming years. Following an 

assessment of the model's predictive ability, the 

SHAP technique was used to dissect the relative 

importance of each component in determining the 

final outcome. An in-depth analysis of PM2.5, 

including temporal patterns and trends as well as 

their associations with other factors, was 

determined. This led to the following inferences: 

The random forest model performed exceptionally 

well in predicting the PM2.5 level. The model was 

explained using the SHAP technique. It was 

discovered that the PM2.5 concentration is 

significantly affected by Visibility, MSLP, CO, and 

O3. There was a positive correlation between NO2, 

CO, MSLP, and SLP, while there was a negative 

correlation between PM2.5 and the air temperature, 

dew point temperature, wind speed, etc. During the 

study period, there were no significant changes in 

PM2.5, and it showed significant seasonal 

variability. However, the winter and monsoon 

months show the highest and lowest concentrations 

in Patna, India. Higher emissions and lower PBLH 

are connected to the winter maximums. Wet 

deposition and higher soil moisture during the 

monsoon months result in less dust re-suspension, 

making those months the cleanest. In 2019, heating 

had a major impact on PM2.5 concentration, and 

along with weather variations, this caused large 

variations in PM2.5 levels during heating and non-

heating seasons. Despite the efforts of the local 

governments, we have not found any studies that 

indicate a major worsening in air quality in the 

capital cities of Patna, India. To the best of our 

knowledge, this is the first study that shows a multi-

disciplinary approach for the analysis and 

prediction of PM2.5 in the capital city of Patna. 

New policies and regulations may be enacted as 

tools to reduce air pollution to curb vehicle 

emissions, road dust re-suspension and other 

fugitive emissions, cleaner fuel, biomass, and 

municipal solid waste (MSW) burning, industrial 

pollution, construction and demolition activities, 

and so on. These are all addressed by implementing 

source-sector-specific measures aimed at reducing 

air pollution. Despite economic development, 

enforcing the NCAP laws more strictly can hasten 

the decline in pollution and lessen its effects on 

people's health throughout India. This study's 

findings will be used to bolster India's National 

Clean Air Programme. 
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Appendix A. Acronyms 
 

Acronyms Full Name 

SLP Station Level Pressure 

MSLP Mean Sea Level Pressure 

RF Random Forest 

GLS Generalized Least Square 

PBLH Planetary Boundary Layer  Height 

TL Trend Lines 

STL  Seasonal and Trend decomposition 

using Loess 

LOESS Locally estimated scatterplot 

smoothing 

MSW Municipal Solid Waste 
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