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The Greater Himalayan Region:
Major river systems, Karakoram & other
main mountain ranges with concentration
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Bhutiani et al. 2007: Significant rise in surface air temperatures over the

Northwest Himalayan region by about 1.6°C during the last century, with winters
warming at a faster rate.
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The State and Fate of Himalayan Glaciers

T. Bolth,lz*A. I(ulkarni,3 A I(éiéih,4 C. Huggel,l’5 F.Paul '], G. Cugley,6 H. Frey,l’5 ).S. I{argel,?
K. Fujila,B M. Skheel,]'5 S Iieljratharya,9 M. Stoffel* ™

Himalayan glaciers are a : uncertainties are of
major congesEGause some projections of their future have serious implicatiol fer resources.
imalayan glaciers are losing mass at rates similar to qlaciers elsewhere, excent for Pwerg

(==}

Q total runoff will occur soom, although continuing shrinkage outside the
increase the seaSmatiya funoff, affect irigation and hydropower

twenty-first century

Julie Gardelle'®, Etienne Berthier? and Yves Arnaud®

Assessments of the state of health of Hindu-Kush-Karakoram-
Himalaya glaciers and their contribution to regional hydrology
and global sea-level rise suffer from a severe lack of
observations'. The globally averaged mass balance of glaciers
and ice caps is negative'3. An anomalous gain of mass has
been suggested for the Karakoram glaciers®* ¢, but was not
confirmed by recent estimates of mass balance. Furthermore,
numerous glacier surges in the region that lead to changes
in glacier length and velocity?’"" complicate the interpretation
of the available observations. Here, we calculate the regional
mass balance of glaciers in the central Karakoram between
1999 and 2008, based on the difference between two digital
elevation models. We find a highly heterogeneous spatial
pattern of changes in glacier elevation, which shows that ice
thinning and ablation at high rates can occur on debris-covered
glacier tongues. The regional mass balance is just positive at
+0.11 £ 0.22m yr ' water equivalent and in agreement with
the observed reduction of river runoff that originates in this
area'?. Our measurements confirm an anomalous mass balance
in the Karakoram region and indicate that the contribution
of Karakoram glaciers to sea-level rise was —O0.0OTmm yr'!
for the period from 1999 to 2008, 0.05 mm yr—' lower than
suggested before™.
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Fig. 1. (A) Map of the Karakoram and Himalaya showing the major river basins and the locations of
measured rates of change in area and of a sample of glacier length change and mass budget mea-
surements (4) (tables S3, S5, and Sé6). (B) Main wind systems. (C) Mean precipitation in January and

-
i

July. [Source: (9)]

in Himalayas due to a unique seasonal cycle Kapnick
et al. 2014
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The Karakoram seasonal cycle is dominated by non-monsoonal winter
precipitation, which uniquely protects it from reductions in annual snowfall
under climate warming over the twenty-first century. The simulations show

that climate change signals are detectable only with long and continuous

records, and at specific elevations. Kapnick et al. (2014) suggest a
meteorological mechanism for regional differences in the glacier response to
climate warming.
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Winter and early spring (Dec-Jan-Feb-Mar-Apr)

Mean seasonal (DJFMA) i £li d
precipitation (mm day) APHRODITE precip (1951-2014) Spatial map of linear tren
in DJFMA precipitation
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Representation of some bulk spatial statistics of WD tracks (a) All 3090 tracks found in ERA-Interim (1979-
2015) (b) Contour plots of genesis (lines) and track point (solid) densities with units of year (100 km)-.
In (a), the red box indicates the box through which the tracks must pass to be considered; the segmented
green track indicates the mean position for 5 days either side of maximum intensity
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s Adapted from Cannon
et al. 2015

Red circle: 200 hPa geopotential
height anomaly centre during
heavy precipitation (lag 0) over
Karakoram (left), Central (right)
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Increasing trend in the amplitude variations of WDs
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Spatial map of trend in
daily precipitation (DJFMA)
exceeding the 90th
percentile during 1951-
2007 (APHRODITE)
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CO2 concentration in future IPCC AR5 scenarios
To 2300

High-resolution (~ 35 km) modeling
of climate change over S.Asia
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Includes only natural climate forcing during
the historical period (1886— 2005) ~ 120 yrs

RCP 4.5 scenario (2006-2100) ~ 95 years:

INCA: INteraction with Chemistry and Aerosol

Future projection run which includes both cdhizne ..
natural and anthropogenic forcing based
on the IPCC AR5 RCP4.5 climate scenario.
The evolution of GHG and anthropogenic
aerosols in RCP4.5 produces a global
radiative forcing of + 4.5 W m~2 by 2100

Projections

Runs performed on PRITHVI, CCCR-IITM
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The LMDZ4 model horizontal grid and
model topography (shaded; units in
meters) and the domain of the Western
Himalayas (WH, 70°E-80°E and 32°N-
39°N). The boxes GP1 (58°E—62°E, 32°N—
36°N) andGP2 (75°E-78°E, 28°N-30°N)
correspond to centers of daily anomalies
of geopotential height at 200 hPa
influencing the lag-0 precipitation over the
Western and Central Himalayas,

respectively (Cannon et al. 2015)
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a) Surface Temperature (DJFMA) from CRU b) Surface Temperature [DJFMA) from Hist
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Spatial maps of DJFMA climatological surface air temperature (°C) & precipitation (mm day™)
from observations and model simulation (HIST)



Climatological mean horizontal winds at 200 hPa for the DJIFMA months (a) ERA-Interim (b)
HIST simulation. Shading denotes wind speed (m/s).

a) ERA Interlm

40N

300

20N

10N

105

40N

30N

20N

10N

W W Wy, W T TR T T e B B e 8 e i —

e e W R, W, W, He, W W W e & § & T T T T aT T a

. W W W W W W W B 3 3 A A A rrrrr.—r.—rﬂ-ﬂ-r-""

1':'5 T T I T T |“‘| = —

30E G0E S0E 120E 150E



Spectral variance of daily zonal winds (m2s-2) at 200 hPa averaged over

the region (40-80E, 25-35N) of the subtropical westerly jet

Variance/frg_interval

a) 200 hPa Zonal Wind (Era-Interim)
A B I T

—L |
10° —m i
] ]M Synoptic variability
10% - —
10" : -
100 —— 'W TRANT ! I
0.00 0.10 0.20 0.30 0.40 0.50

Frequency (cycles/day)

ERA-Interim

Synoptic variability: ~ 4 — 10 days

10°

10"

10°

b) 200 hPa Zonal Wind (HIST)
e a1

[
Upper confidence bound _
1"' r)‘ 1«
1 Lower confidence bound M
————— WﬂrMﬂ
0.00 0.10 0.20 0. 30 0.40 0.50

Frequency (cycles/day)

HIST simulation

Krishnan et al. (2018)



a) WH (APHRO) b) CH (APHRO) ¢) WH-CH (APHRO)

_-I. 1 | ___r"l P 1 | i
40N - - ] s -
: L] ] —
30N ] - - - '
20N - - ] - -
10N . - -
_ I I I | I I I I I -
-5 -4 -2 0 2 4 6 8
e]n C:H |[LMDE} f) WH-CH (LMDZ)
L PN T T [N TR T N T [N S N |
= S :
. - M I
30N - . i . F o
: S -,_ iy Jg%?‘ﬁ
E :— : %\)/J\L
] -] N AT : s\
fon - = U{:} It:‘ ': D ¢

S0E TOE BOE S0E 100E 8OE TOE 80OE S0E 100E 60E TOE BOE S0E 100E

Composites of lag-0 precipitation anomalies (mm day) over the WH and CH, associated with synoptic-
scale WDs, constructed by taking the difference between the 15t percentile and 85t percentile of the
4-15 day band-pass filtered time-series of GP1 (for WH) and GP2 (for CH), respectively. This approach is
similar to Cannon et al. (2015). (a-c) Anomaly composites [WH, CH and difference (WH-CH)] based on
the APRHODITE precipitation dataset (d-f) Same as (a-c) except for HIST.



a] Wmd & temperamre at EﬂﬂhFa {EFtA—Intenm} (c) F'rempnahle water {EFtA-Intenm}

5-4-3-2-10 123425 5=4-3-2-10123 4 5

Composites of lag-0 anomalies of 500 hPa circulation and precipitable water associated with
the synoptic scale WDs, constructed by taking the difference (15" minus 85 ) percentiles of
the 4-15 days band-pass filtered time-series of GP1 from ERA-Interim and HIST simulation

Krishnan et al. (2018)



Difference between HIST and NATURAL simulations (1951-2005): DJFMA Mean

a) T2m b) Precipitation
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Spatial map of trend in daily precipitation (DJFMA) exceeding the 90th percentile
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Time series showing interannual variation of daily precipitation exceeding the 90th percentile
over the Karakoram Western Himalayas (70E-80E; 32N-39N) for HIST, HISTNAT & RCP4.5
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Time-series showing amplitude variations of WDs associated with precipitation over the
Karakoram Himalayas
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Liu and Chen (2000)

Map of the Tibetan Plateau (TP) domain.
The black area approximately indicates the

TP where the elevation is above 2000 m a.s.|
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Linear trends of different thickness
layers from the HIST and HISTNAT
simulations for the period 1951-
2005. The units are m (55 yr)*. Red
bars indicate trends calculated using
the DJFMA layer thickness values
averaged over the eastern Tibetan
Plateau (90°E-120°E, 30°N-38°N)
from the HIST experiment. Blue bars
correspond to trends of thickness
values averaged over the region to
the west of the Tibetan Plateau
(40°E-70°E, 30°N-38°N) from the HIST
experiment. The corresponding
trends from the HISTNAT experiment
are shown by blue and red circles
respectively.
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Summary

*Winter-to-early spring precipitation in the Western Himalayas (WH) primarily comes from
eastward propagating weather systems from the Mediterranean region known as western
disturbances (WDs). This is crucial for protecting the Karakoram-centered WH from significant
snowmelt under warming climate.

*Increasing frequency of precipitation extremes in recent decades noted in some station
observations located over the Western Himalayas

*Long-term climate change experiments were conducted at CCCR, IITM, Pune, using a global
variable grid climate model with high-resolution zooming (grid size < 35 km) over South Asia

*Increasing trends in surface temperature and precipitation extremes over WH noted in the 20t
century simulations and is attributable to human-induced climate change.

*Rising trend of simulated precipitation extremes over the WH region are found to concur with
enhanced amplitude variations in the WD activity.

*Changes in background subtropical winds and mid-tropospheric temperature gradients
associated with elevation dependency of the climate warming signal over the Tibetan Plateau.

*Simulations show snowfall enhancements in the high-elevation regions of the Karakoram and
HKH due to enhanced amplitude variations of WDs. Declining tendency in snowfall amounts,
associated with increased surface warming, is noted in the Central and Eastern Himalayas.
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